Intersection Types for -Trees
نویسنده
چکیده
We introduce a type assignment system which is parametric with respect to ve families of trees obtained by evaluating -terms (Bohm trees, L evy-Longo trees, ...). Then we prove, in an (almost) uniform way, that each type assignment system fully describes the observational equivalences induced by the corresponding tree representation of terms. More precisely, for each family of trees, two terms have the same tree if and only if they get assigned the same types in the corresponding type assignment system.
منابع مشابه
A New Heuristic Algorithm for Drawing Binary Trees within Arbitrary Polygons Based on Center of Gravity
Graphs have enormous usage in software engineering, network and electrical engineering. In fact graphs drawing is a geometrically representation of information. Among graphs, trees are concentrated because of their ability in hierarchical extension as well as processing VLSI circuit. Many algorithms have been proposed for drawing binary trees within polygons. However these algorithms generate b...
متن کاملIntersection Types, -models, and B Ohm Trees
This paper is an introduction to intersection type disciplines, with the aim of illustrating their theoretical relevance in the foundations of -calculus. We start by describing the well-known results showing the deep connection between intersection type systems and normalization properties, i.e., their power of naturally characterizing solvable, normalizing, and strongly normalizing pure -terms...
متن کاملIntersection Types, -models, and Bb Ohm Trees
This paper is an introduction to intersection type disciplines, with the aim of illustrating their theoretical relevance in the foundations of-calculus. We start by describing the well-known results showing the deep connection between intersection type systems and normalization properties, i.e., their power of naturally characterizing solvable, normalizing, and strongly normalizing pure-terms. ...
متن کاملIntersection Types for Normalization and Verification
One of the basic principles in typed lambda calculi is that typable lambda terms are normalizable. Since the converse direction does not hold for simply typed lambda calculus, people have been studying its extensions. This gave birth to the intersection type systems, that exactly characterize various classes of lambda terms, such as strongly/weakly normalizable terms and solvable ones (see e.g....
متن کاملSome lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کامل